高考等比数列小题_高中数学等比数列题目

高职单招 2024-11-18 10:06:03

2014山东高考数学理科第19题:已知等数列an的公为2,前n项和为sn,且s1,s2,s4成等比数列

当 时, , 是 的减函数;当 时, , 是 的增函数,所以当 = 时, 。这时点P 位于线段AB 的中垂线上,且距离AB 边

因为an=2n-1 an+1 = 2(n+1)-1=2n+1

高考等比数列小题_高中数学等比数列题目高考等比数列小题_高中数学等比数列题目


高考等比数列小题_高中数学等比数列题目


高考等比数列小题_高中数学等比数列题目


4n/D[解析] 由等比数列前n项和性质知,S5,S10-S5,S15-S10成等比数列,即(S10-S5)2=S5(S15-S10),(anan+1)

=4n/[(2n-1)(2n+1)]∵EF 面ACD ,AD 面ACD ,∴直线EF‖面ACD .

=1/(2n-1) + 1/(2n+1)

其实是分式的运算

(本小题满分13分)公不为零的等数列 中, ,且 、 、 成等比数列.(1)求数列 的通项公式;

所以,故只需 ()恒成立

(1)

(Ⅱ)面EFC⊥面BCD .

(2)

n=1时,A1=1也满足上式。

试题分析:解:(1)设公为

解得

……4分

的通项公式为

………6分

①②

………9分

………13分

高中等比数列问题,求帮忙!

所以a12=a2q10=3×25=96.

a4=a1q^3=16q^3

时, ,所以 =

a7=a1q^6=16q^6

16q^3(1+q^3)=9/4

64q^3(1+q^3)=9

64(q^3)^2+64(q^3)-9=0

(8q^3-1)(8q^3+9)=0

8q^3+9>0

所以,

q^3=1/8

所以△ABC的面积S=2(1)[(3n2+n)+3(n+2)2+(n+2)]×2-2(1)[(3n2+n)+3(n+1)2+(n+1)]×1-12[3(n+1)2+(n+1)+3(n+2)2+(n+2)]×1q=1/2

a5=a1q^4=1

S5=1+2+4+8+16=31

寻找高考概率题

………11分

高考题型

15.如图,在平面直角坐标系 中,以 轴为始边做两个锐角 , ,它们的终边分别与单位圆相交于A,B 两点,已知A,B 的横坐标分别为 .

选择题、填空题、解答题

重点内容

(1)函数与导数:在这个版块重点考查,二次函数,高次函数,分式函数和复合函数的单调性和最值,考生尤其要重视分式函数和指对复合函数的单调性和值域的求解方法。同时考生应重视函数与数列、函数与不等式的结合,灵活掌握处理这类综合题的方法和技巧,抓住典型例题,以不变应万变。

(2)平面向量与三角函数:在这个版块里,将向量作为一种工具放在三角函数里考,重点考查三方面:①三角的化简与求值,考查化简与求值,重点考察的是五组三角公式,包括同角基本公式,诱导公式,倍半公式,和公式和辅助角公式②图象和性质:在这里重点考查的是正弦函数和余弦函数的图象和性质,掌握正弦和余弦函数的性质应该从以下的7个方面去掌握:定义域,值域,单调性,奇偶性,图象,周期性和对称性,特别是正弦和余弦函数的性质是高考重点中的重点,应特别关注。③三角恒等变形,这部分重点考察的还是一些基本公式的应用,提醒各位考生应加强对基本公式的理解和记忆。

(3)数列:在这个版块里重点考查的是数列的通项与求和,在这里面我们重点掌握几种常见求通项的方法,包括公式法,待定系数法等等,在求和里面我们重点掌握几种常见求和的方法,包括利用公式法,裂项相加法,错位相减法等等,在这里要强调的是要掌握每一种方法所适应于哪一类的数列。一般来讲在高考中通项是重点也是难点,特别是项与项之间的递推公式应重点掌握。对于数列的求和特别应该重视等比数列求和公式中公比的限制性条件,这是高考的一个易错点,应重点关注!

(4)空间向量和立体几何:2010新课标高考对这个版块的要求降低。特别是对文科同学来说,对于角度和距离的计算仅限于线线角和点面距离、几何体的表面积和体积。在证明中以线面平行,线面垂直的证明为主。对于理科同学来讲,在这里我建议大家要掌握利用空间向量俩来解决立体几何中的证明和计算问题。特别强调的是利用空间向量求解的时候必须准确记忆角度和距离的计算公式,然后理解公式中各字母的含义,按照公式去找条件即可。对于这部分考生除对传统的证明和计算重点掌握之外还应加强对立体几何中的翻转问题、动点问题训练,以从容应对高考中的新题、难题。

1、(本小题满分12分)某安全生产监督部门对5家小型煤矿进行安全检查(简称安检).若安检不合格,则必须整改.若整改后经复查仍不合格,则强制关闭.设每家煤矿安检是否合格是相互的,且每家煤矿整改前(Ⅰ) 恒成立安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果到0.01):

(Ⅰ)恰好有两家煤矿必须整改的概率;

(Ⅱ)平均有多少家煤矿必须整改;

(Ⅲ)至少关闭一家煤矿的概率.

等比数列 增长率小题

a4+a7=9/4

设年初月生产总值为a,则年生产总值为a+a(p+1)+a(p+1)^2+……+a(p+1)^11

第二年年生(3)根据下面给出的2004年至2013年我国排放量(单位:万吨)柱形图。以下结论不正确的是()产总值为a(p+1)^12+a(p+1)^13+……+a(p+1)^23

两式相除得到第二年是年的(p+1)^化简得3 =0,因为d≠0,所以也不能删去 ;12,那么年平均增长率为(p+1)^12-1

求2008年江苏高考数学试卷(带的)

(C)

绝密★启用前

2008年普通高等学校招生全国统一考试(江苏卷)

数 学

本试卷分第I卷(填空题)和第II卷(解答题)两部分.考生作答时,将答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.

注意事项:

1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的

准考证号、姓名,并将条形码粘贴在指定位置上.

铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他标号;非选择

题使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚.

3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的无效.

4.保持卡面清洁,不折叠,不破损.

5.作选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的标号涂黑.

样本数据 , , , 的标准

其中 为样本平均数

柱体体积公式

其中 为底面积, 为高

一、填空题:本大题共1小题,每小题5分,共70分.

1. 的最小正周期为 ,其中 ,则 = ▲ .

10

2.一个连续投2 次,点数和为4 的概率 ▲ .

本小题考查古典概型.基本共6×6 个,点数和为4 的有(1,3)、(2,2)、(3,1)共3 个,故

3. 表示为 ,则 = ▲ .

14.A= ,则A Z 的元素的个数 ▲ .

本小题考查的运算和解一元二次不等式.由 得 ,∵Δ<0,∴A 为 ,因此A Z 的元素不存在.

5. , 的夹角为 , , 则 ▲ .

本小题考查向量的线性运算.

= , 7

76.在平面直角坐标系 中,设D是横坐标与纵坐标的均不大于2 的点构成的区域, E是到原点的距离不大于1 的点构成的区域,向D 中随机投一点,则落入E 中的概率 ▲ .

本小题考查古典概型.如图:区域D 表示边长为4 的正方形的内部(含边界),区域E 表示单位圆及其内部,因此.

7.算法与统计的题目

8.直线 是曲线 的一条切线,则实数b= ▲ .

本小题考查导数的几何意义、切线的求法. ,令 得 ,故切点(2,ln2),代入直线方程,得,所以b=ln2-1.

ln2-1

9在平面直角坐标系中,设三角形ABC 的顶点分别为A(0,a),B(b,0),C (c,0) ,点P(0,p)在线段AO 上(异于端点),设a,b,c, p 均为非零实数,直线BP,CP 分别交AC , AB 于点E ,F ,一同学已正确算的OE的方程: ,请你求OF的方程:

( ▲ ) .

本小题考查直线方程的求法.画草图,由对称性可猜想填 .事实上,由截距式可得直线AB: ,直线CP: ,两式相减得 ,显然直线AB与CP 的交点F 满足此方程,又原点O 也满足此方程,故为所求直线OF 的方程.

10.将全体正整数排成一个三角形数阵:

12 3

4 5 6

7 8 9 10

按照以上排列的规律,第n 行(n ≥3)从左向右的第3 个数为 ▲ .

本小题考查归纳推理和等数列求和公式.前n-1 行共有正整数1+2+…+(n-1)个,即 个,因此第n 行第3 个数是全体正整数中第 +3个,即为 .

11.已知 , ,则 的最小值 ▲ .

本小题考查二元基本不等式的运用.由 得 ,代入 得

,当且仅当 =3 时取“=”.

312.在平面直角坐标系中,椭圆 1( 0)的焦距为2,以O为圆心, 为半径的圆,过点 作圆的两切线互相垂直,则离心率 = ▲ . ? ?

设切线PA、PB 互相垂直,又半径OA 垂直于PA,所以△OAP 是等腰直角三角形,故 ,解得 .

13.若AB=2, AC= BC ,则 的值 ▲ . ?

本小题考查三角形面积公式、余弦定理以及函数思想.设BC= ,则AC= ,

根据面积公式得 = ,根据余弦定理得

,代入上式得

=由三角形三边关系有 解得 ,

故当 时取得 值

本小题考查函数单调性的综合运用.若x=0,则不论 取何值, ≥0显然成立;当x>0 即 时, ≥0可化为,

设 ,则 , 所以 在区间 上单调递增,在区间 上单调递减,因此 ,从而 ≥4;

当x<0 即 时, ≥0可2.选择题使用2B化为 ,

在区间 上单调递增,因此 ,从而 ≤4,综上 =4

4二、解答题:解答应写出文字说明,证明过程或演算步骤.

(Ⅰ)求tan( )的值;

本小题考查三角函数的定义、两角和的正切、二倍角的正切公式.

由条件的 ,因为 , 为锐角,所以 =

因此

(Ⅰ)tan( )=

(Ⅱ) ,所以

∵ 为锐角,∴ ,∴ =

16.在四面体ABCD 中,CB= CD, AD⊥BD,且E ,F分别是AB,BD 的中点,

本小题考查空间直线与平面、平面与平面的位置关系的判定.

(Ⅰ)∵ E,F 分别是AB,BD 的中点,

∴EF 是△ABD 的中位线,∴EF‖AD,

(Ⅱ)∵ AD⊥BD ,EF‖AD,∴ EF⊥BD.

∵CB=CD, F 是BD的中点,∴CF⊥BD.

又EF CF=F,∴BD⊥面EFC.∵BD 面BCD,∴面EFC⊥面BCD .

17.某地有三家工厂,分别位于矩形ABCD 的顶点A,B 及CD的中点P 处,已知AB=20km,

CB =10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A,B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO,BO,OP ,设排污管道的总长为 km.

(Ⅰ)按下列要求写出函数关系式:

①设∠BAO= (rad),将 表示成 的函数关系式;

②设OP (km) ,将 表示成x 的函数关系式.

(Ⅱ)请你选用(Ⅰ)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短.

本小题主要考查函数最值的应用.

(Ⅰ)①由条件知PQ 垂直平分AB,若∠BAO= (rad) ,则 , 故

,又OP= 10-10ta ,

所以 ,

所求函数关系式为

②若OP= (km) ,则OQ=10- ,所以OA =OB=

所求函数关系式为

(Ⅱ)选择函数模型①,

令 0 得sin ,因为 ,所以 = ,

km处。

18.设平面直角坐标系 中,设二次函数 的图象(Ⅱ)求 的值.与两坐标轴有三个交点,经过这三个交点的圆记为C.求:

(Ⅰ)求实数b 的取值范围;

(Ⅱ)求圆C 的方程;

(Ⅲ)问圆C 是否经过某定点(其坐标与b 无关)?请证明你的结论.

本小题主要考查二次函数图象与性质、圆的方程的求法.

(Ⅰ)令 =0,得抛物线与 轴交点是(0,b);

令 ,由题意b≠0 且Δ>0,解得b<1 且b≠0.

(Ⅱ)设所求圆的一般方程为

令 =0 得 这与 =0 是同一个方程,故D=2,F= .

令 =0 得 =0,此方程有一个根为b,代入得出E=―b―1.

所以圆C 的方程为 .

(Ⅲ)圆C 必过定点(0,1)和(-2,1).

证明如下:将(0,1)代入圆C 的方程,得左边=0 +1 +2×0-(b+1)+b=0,右边=0,

所以圆C 必过定点(0,1).

同理可证圆C 必过定点(-2,1).

19.(Ⅰ)设 是各项均不为零的等数列( ),且公 ,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列:

①当n =4时,求 的数值;②求 的所有可能值;

(Ⅱ)求证:对于一个给定的正整数n(n≥4),存在一个各项及公都不为零的等数列 ,其中任意三项(按原来顺序)都不能组成等比数列.

本小题主要考查等数列与等比数列的综合运用.

(Ⅰ)①当n=4 时, 中不可能删去首项或末项,否则等数列中连续三项成等比数列,则推出d=0.

若删去 ,则有 即

化简得 =0,因为 ≠0,所以 =4 ;

若删去 ,则有 ,即 ,故得 =1.

综上 =1或-4.

②当n=5 时, 中同样不可能删去首项或末项.

若删去 ,则有 = ,即 .故得 =6 ;

若删去 ,则 = ,即 .

若删去 ,则有 = ,即 .故得 = 2 .

当n≥6 时,不存在这样的等数列.事实上,在数列 , , ,…, , , 中,

由于不能删去首项或末项,若删去 ,则必有 = ,这与d≠0 矛盾;同样若删

去 也有 = ,这与d≠0 矛盾;若删去 ,…, 中任意一个,则必有

= ,这与d≠0 矛盾.

综上所述,n∈.

(Ⅱ)略

20.若 , , 为常数,

且(Ⅰ)求 对所有实数成立的充要条件(用 表示);

(Ⅱ)设 为两实数, 且 ,若

求证: 在区间 上的单调增区间的长度和为 (闭区间 的长度定义为 ).

本小题考查充要条件、指数函数与函数、不等式的综合运用.

()

因为

综上所述, 对所有实数成立的充要条件是:

(Ⅱ)1°如果 ,则的图象关于直线 对称.因为 ,所以区间 关于直线 对称.

因为减区间为 ,增区间为 ,所以单调增区间的长度和为

2°如果 .

(1)当 时. ,

当 , 因为 ,所以 ,

故 =

当 , 因为 ,所以

故 =

当 时,令 ,则 ,所以 ,

当 时, ,所以 =

在区间 上的单调增区间的长度和

=(2)当 时. ,

当 , 因为 ,所以 ,

故 =

当 , 因为 ,所以

故 =

因为 ,所以 ,所以

当 时,令 ,则 ,所以 ,

当 时, ,所以 =

在区间 上的单调增区间的长度和

=综上得 在区间 上的单调增区间的长度和为

数列高考题

的等数列,则 ,所以 .

1.(必修5 P68复习参考题B组T1改编)在公比大于1的等比数列{an}中,a3a7=72,a2+a8=27,则a12=()

A.96 B.64

C.72 D.48

A[解析] 由题意及等比数列的性质知a3a7=a2a8=72,又a2+a8=27,

所以a2,a8是方程x2-27x+72=0的两个根,

所以a8=3,(a2=24,)或a8=24,(a2=3,)又公比大于1,

所以a8=24,(a2=3,)所以q6=8,即q2=2,

2.(必修5 P58练习T2改编)等比数列{an}的前n项之和为Sn,S5=10,S10=50,则S15的值为()

A.60 B.110

C.160 D.210

所以S15=S5((S10-S5)2)+S10

=10((50-10)2)+50=210.故选D.

3.(必修5 P39练习T5改编)设等数列{an},{bn}的前n项和分. . . . . . .别为Sn,Tn,若对任意自然数n都有Tn(Sn)=4n-3(2n-3),则b5+b7(a9)+b8+b4(a3)的值为________.

[解析] 因为{an},{bn}为等数列,所以b5+b7(a9)+b8+b4(a3)=2b6(a9)+2b6(a3)=2b6(a9+a3)=b6(a6).

因为T11(S11)=b1+b11(a1+a11)=2b6(2a6)=4×11-3(2×11-3)=41(19),

所以b5+b7(a9)+b8+b4(a3)=41(19).

[] 41(19)

4.(必修5 P45练习T3,P47习题2.3B组T4联合改编)M={m|m=2n,n∈N}共有n个元素,其和为Sn,则(100)Si(1)=________.

[解析] 由m=2n(n∈N)知M中的元素从小到大构成首项a1=2,公d=2的等数列.

所以Sn=n×2+2(n(n-1))×2=n2+n=n(n+1).

所以(100)Si(1)=1×2(1)+2×3(1)+…+100×101(1)

=1-2(1)+2(1)-3(1)+…+100(1)-101(1)=1-101(1)=101(100).

[] 101(100)

5.(必修5 P44例2改编)等数列{an}的前n项之和求证:(Ⅰ)直线EF ‖面ACD ;为Sn,且a5=28,S10=310.

(1)求数列{an}的通项公式;

(2)记函数f(n)=Sn,(n∈N),A(n,f(n)),B(n+1,f(n+1)),C(n+2,f(n+2))是函数f(n)上的三点,求证△ABC的面积为定值,并求出其定值.

[解] (1)因为a5=28,S10=310.

所以d=310,(10×9)

解得a1=4,d=6.

所以an=4+(n-1)×6=6n-2.

(2)由(1)知Sn=4n+2(n(n-1))×6=3n2+n.

所以A,B,C的坐标分别为(n,3n2+n),(n+1,3(n+1)2+(n+1)),(n+2,3(n+2)2+n+2).

=(6n2+14n+14)-(3n2+4n+2)-(3n2+10n+9)

即△ABC的面积为定值3.

①nS(n+1)-(n+1)Sn=n(n+c)

两边同除n(n+1)

S(n+1)/(n+1)-Sn/n=(n+c)/(n+1)

S1/1,S2/2,S3/3是等数列

c=1

②S(n+1)/(n+1)-Sn/n=1

S1/1=A1=1

是以1为首项,1为公的等数列

Sn/n=n

Sn=n^2

n>=2时,

An=Sn-S(n-1)=n^2-(n-1)^2=2n-1

所以 An=2n-1

去教育网查询高考数学原题 基本上每一张卷子里都会有数列题

(高考)已知等比数列{an}中,a1=1/3,公比q=1/3。求Sn为{an}的前n项和,证明:Sn=1-an/2求设bn...

∴数列{bn}的通项公式是:bn=32^(n-1).

an=(1/3)^n,利用等比求和公式Sn=(1-(1/3)^n)Sn=(3n-4)2^(n-1)+2/2,所以Sn=1-an/2

,则

高二数学题(关于等比数列)

a(n) = (5/3)3^(n-1)时,1/a(n) = (3/5)(1/3)^(n-1),

a3+a6=2a5

a1q^2+a1q^5=s(n)单调递增,9/10 > s(n) >= s(1) = 9/10 - 3/10 = 3/5.2a1q^4

q^3-2q^2+1=0

q^2(q-1)-(q-1)(q+1)

=(q^2-q-1)(q-1)=0

q^2-q-1=0 q=(1+-√5)/2

yuan(t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2: ,C3: 。shi=1/q =2/(1+-√5)

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。