其实,高考的重点在于数列,解析几何和排列组合这三部分。。。至于立体几何,三角函数之类是保证均分的题目。。正真高考时三角函数的题目会比平时做的简单很多,一般只是些基础题型,LZ只要多做点三角函数的基础题,多看些题型。。比较熟料的掌握课本上的几个定理。。。高考时三角函数应该没什么问题
高考函数的大题视频讲解 高考函数的大题视频讲解人教版
高考函数的大题视频讲解 高考函数的大题视频讲解人教版
呵呵 俺也跟你一样高考生前几天还对这种题犯困… 少废话 。首先小问 掌握正 余弦互换 一般没问题了 第二问 掌握求面积的方法
还有一点 强者善于从自己身上发掘力量 自己终总结 即使花3小时也值
首先是把最基本的公式搞清楚,且弄清基本公式二、数列题的源。其次,不懂的的东西要马上问,是问同学。再是,把对称的条件看清楚,以免出低级错误。,多做关于三角函数的专题,把大体题型搞清楚了,就只是套了。祝高考大捷6、注意放回抽样,不放回抽样;!
解:h'(x)=1/x-ax-2,要存在单调递减区间,即h'(x)<0有解
b:(理)二面角、线面角。由f(x)和g(x)可以得出h(x)定义域为x>0
故h'(x)<0可以化简为ax^2+2x-1>0
当a=0时,2x-1>0,显然有解
当a>0时,抛物线开口向上,显然在x>0范围内不等式必然有解
故可以转化为ax^2+2x-1=0有两个不同的解
由b^2-4ac>0有:4+4a>0
综合以上,可得:a>-1
(2)从几何上来看
f(x)=ax与g(x)=lnx-1只可能在象限相交,而且x>0时f(x)初始值比g(x)高
取F(x)=f(x)-g(x)=ax-lnx+1
F'(x)=a-1/x
只有当0<x≤1/a时,F(x)单减,即f(x)与g(x)的将缩小
而当x>1/a时,F(x)单增,f(x)与g(x)的将增大
于是可以理解为在象限随着x的增加,f(x)与g(x)的距将先缩小后增大。
因此在x=1/a时,f(x)与g(x)的距将最小
此时若5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);f(x)>g(x)即a>e^(-2)时,两函数无交点
若f(x)=g(x)即a=e^(-2)时,两函数有交点
若f(x)<g(x)即0<a<e^(-2)时,两函数有两交点
(1) cosB-cos2B=0
还有现在的三角函数题基本都要用到正弦、余弦定理,只要你把这两个定理默写进去,一般都会得到二到四分了,别忘了还有三角形的面积公式,好吧,祝你成功!cosB-(2(cosB)^2-1)=0
解得cosB=1 (不合题意,舍去)或cosB=-1/2
那么B=2π/3
所以 C=π-A-B=π/12
不合题意,舍去
根据题意得角B1.先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);为90
高考依然到了的冲刺阶段,考生们依然坚持着最为紧张的复习。如何在众多知识点中把握住关键点,并掌握哪些技巧呢?那么接下来给大家分享一些关于做数学大题的技巧做数学大题的技巧,希望对大家有所帮助。
1.合理安排,保持清醒。数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。然后带齐用具,提前半小时到考场。做数学大题的技巧
一、三角函数题
1、证明一个数列是等(等比)数列时,下结论时要写上以谁为首项,谁为公(公比)的等(等比)数列;
2、一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的设,否则不正确。利用上设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的 方法 是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
三、立体几何题
1、证明线面位置关系,一般不需要去建系,更简单;
2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;
3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
四、概率问题
1、搞清随机试验包含的所有基本和所求包含的基本的个数;
2、搞清是什么概率模型,套用哪个公式;
3、记准均值、方、标准公式;
4、求概率时,正难则反(根据p1+p2+...+pn=1);
7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;
8、注意条件概率公式;
9、注意平均分组、不完全平均分组问题。
五、圆锥曲线问题
1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;
2、注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;
3、战术上整体思路要保7分,争9分,想12分。
六、导数、极值、最值、不等式恒成立(或逆用求参)问题
2、注意一问有应用前面结论的意识;
3、注意分论讨论的思想;
4、不等式问题有构造函数的意识;
5、恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);
6、整体思路上保6分,争10分,想14分。
数学必考5类题型解题技巧
一、排列组合篇
1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5.了解随机的发生存在着规律性和随机概率的意义。
6.了解等可能性的概率的意义,会用排列组合的基本公式计算一些等可能性的概率。
7.了解互斥、相互的意义,会用互斥的概率加法公式与相互的概率乘法公式计算一些的概率。
8.会计算在n次重复试验中恰好发生k次的概率.
二、立体几何篇
知识整合
1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高 逻辑思维 能力和空间想象能力。
2.判定两个平面平行的方法:
(1)根据定义--证明两平面没有公共点;
(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;
(3)证明两平面同垂直于一条直线。
3.两个平面平行的主要性质:
(1)由定义知:“两平行平面没有公共点”。
(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。
(3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平 面相 交,那么它们的交线平行“。
(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
(5)夹在两个平行平面间的平行线段相等。
(6)经过平面外一点只有一个平面和已知平面平行。
解答题分步骤解答可多得分
2.通览全卷,摸透题情。刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。这样能提醒自己先易后难,也可防止漏做题。
3.解答题规范有序。一般来说,试题中容易题和中档题占全卷的80%以上,是考生得分的主要来源。对于解答题中的容易题和中档题,要注意解题的规范化,关键步骤不能丢,如三种语言(文字语言、符号语言、图形语言)的表达要规范,逻辑推理要严谨,计算过程要完整,注意算理算法,应用题建模与还原过程要清晰,合理安排卷面结构……对于解答题中的难题,得满分很困难,可以采用“分段得分”的策略,因为高考(微博)阅卷是“分段评分”。比如可将难题划分为一个个子问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,获取一定的分数。有些题目有好几问,前面的小问你解答不出,但后面的小问如果根据前面的结论你能够解答出来,这时候不妨引用前面的结论先解答后面的,这样跳步解答也可以得分。
三、数列问题篇
数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等数列、等比数列,求极限和数学归纳法综合在一起。探索性问题是高考的 热点 ,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等数列与等比数列的概念、性质、通项公式及求和公式。(2)数列与 其它 知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。(3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为一题难度较大。
知识整合
1. 在掌握等数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;
2. 在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
3. 培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.
四、导数应用篇
专题综述
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:
(1)刻画函数(比初等方法细微);
(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);
(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
知识整合
1.导数概念的理解。
2.利用导数判别可导函数的极值的方法及求一些实际问题的值与最小值。复合函数的求导法则是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。
3.要能正确求导,必须做到以下两点:
(1)熟练掌握各基本初等函数的求导公式以及和、、积、商的求导法则,复合函数的求导法则。
(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。
高考解析几何剖析:
1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;
2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。
有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:
(1)几何问题代数化。
(2)用代数规则对代数化后的问题进行处理。
高考数学大题答题思路
1、函数与方程思想
2、 数形结合思想
中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
3、特殊与一般的思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用
4、极限思想解题步骤
极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果
5、分类讨论思想
同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。建议同学们在分类讨论解题时,要做到标准统一,不重不漏。
做数学大题的技巧相关 文章 :
★ 做数学选择题的十种技巧
★ 做数学应用题的技巧
★ 做数学蒙题的技巧
★ 高考数学大题答题技巧方法
★ 高考数学大建议同学在做几何时,用坐标法,思维简单,但要头脑清晰,提高运算速度就能很快算出来题的解题技巧
★ 做数学题有何技巧方法
★ 做数学压轴题的技巧高中
★ 高考数学大题得分技巧
15、注意计数时利用列举、树图等基本方法;、高考数学分值分布
三角函数18分左右;立体几何22分左右;解析几何28分左右;数列18分左右;函数与导数43分左右;不等式12分左右;二项式定理6分左右;复数5分;概率与统计18分左右。各知识点都很平均。解析几何的选择题只是考察概念,不会很难,选择提前10道和大题的三角函数,概率,立体几何, 只多要做题,可以在短时间内突破。
2、高考数学哪部分最难
3、高考数学如何取得高分注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。
真懂。知识要掌握准确:在复习中,考生要树立稳扎稳打的习惯,对似懂非懂的基本问题必须实实在在地对待。方法要到位:比如证明问题常用的方法:比较法。2016、2017、2018年高考题都有它的应用,到现在没有变化吗?现在的比较法从高考题上就告诉我们不仅要会直接比较,还要会间接比较即调整后作或作比,而且还要和导数相结合★ 做数学压轴题的技巧初中。
真算。提高自己运算能力,也就是加强算功。将运算进行到底,应当始终成为高考复习的一个原则。注重算法,算理。在平时运算时应注重精算、心算、悟算、不算的训练,注重把握好运算方向,选择好的运算公式,避免盲目运算。
高考数学的题型有简易,逻辑数列,三角函数,立体几何,圆锥曲线,概率与统计,导数算法,线性规划不等式,向量,复数,三视图。选择题40分、填空题30分、解答题80分。这些占分比考生们要根据自身的情况好好的复习,着重要侧重一些重点难点的题型。
1.选择题,12道一道五分,分值60占百分之五十2.填空题4道,一道五分,分值20,占6/1。3.简答题,分值30占4/1
定义域为R的话,一次函数和反比例函数没有极值.
两次函数有一17,数列或三角函数(包括解三角形)个极值.
f(x)=ax^2+bx+19,统计概率c
a>0时,x=-b/2/a时有最小值
a
建议你将这两块的知识的各大市的试卷上的问题做一个专题的整理,把题目摘抄下来先逐一解决,然后再对比归当x=1/a时,f(x)=1,g(x)=ln(1/a)-1=-lna-1纳出方法和一些经验!这样可以对两块问题有一个整体的把握!如,圆锥曲线中的焦点问题定义解题的意识是否形成
(1)常值代换:特别是用"1"的代换,如1=cos2θ+sin2θ=tanx·cotx=tan45°等。函数与导数一二问一般比较简单,不要纠结于一个题目。平时多总结各题型的解题技巧,做题时想的就广泛一些,具体还要靠自己。
平常时做练习的时候就要养成先自己做一遍,然后再去校对,校对完又自己再重新做一遍,一来加深记忆,二来规范自己的答题模式,再有,自己要多练多点总结才能将一般性的答题解题规律熟悉,考起试来就轻松好多
高考数学大题6大题型是:
三角函数的题基本上就是以上公式反复换用,基本要记住特殊角的各个三角函数,30度、60度、45度等1、三角函数、向量、解三角形
(1)三角函数画图、性质、三角恒等变换、和与公式。
(2)向量的工具性(平面向量背景)。
(3)正弦定理、余弦定理、解三角形背景。
(4)综合题、三角题一般用平面向量进行“包装”,讲究知识的交汇性,或将三角函数与解三角形有机融合。
2、概率与统计
(1)古典概型。
(2)茎叶图。
(3)直方图。
(4)回归方程。
(5)(理)概率分布、期望、方、排列组合。概率题贴近生活、贴近实际,考查等可能 性、互斥、的概率计算公 式,难度不算很大。
3、立体几何
(1)平行。
(2)垂直。
(3)角
a:异面直线角。
(5)既可以用传统的几何法,也可以建立空间直角坐标系,利用法向量等。
4、数列
(1)等数列、等比数列、递推数列是考查的热点,数列通项、数列前n项的和以及二者之间的关系。
(2)文理科的区别较大,理科多出现在压轴题位置的卷型,理科注重数学归纳法。
(3)错位相减法、裂项求和法。
(4)应用题。
5、圆锥曲线(椭圆)与圆
(1)椭圆为主线,1、先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);强调圆锥曲线与直线的位置关系,突出韦达定理或值法。
(2)圆的方程,圆与直线的位置关系。
(3)注重椭圆与圆、椭圆与抛物线等的组合题。
6、函数、导数与不等式
(1)函数是该题型的主体:三次函数,指数函数,对数函数及其复合函数。
(2)函数是考查的核心内容,与导数结合,基本题型是判断函数的单调性,求函数的最 值(极值),求曲线的切线方程,对参数取值范 围、根的分布的探求,对参数的分 类讨论以及代数推理等等。
(3)利用基本不等式、对勾函数性质。
解答高考选择题既要求准确,又要快速选择,正如高冠教育(ggedu21)明确指出的,应“多一点想的,少一点算的”。我们都会有算错的时候,怎样才不会算错呢?“不算就不会算错” 因此,在解答时应该突出一个"选"字,尽量减少书写解题过程,在对照选择支的同时,多方考虑间接解法,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取。我们不要给任何“方法”做出限定,重要的是这种解答的思想方式。
答题口诀:一、高考数学选择题命题规律如下:
1、函数与导数
2—3个小题,1个大题,客观题主要以考查函数的基本性质、函数图像及变换、函数零点、导数的几何意义、定积分等为主,也有可能与不等式等知识综合考查;解答题主要是以导数为工具解决函数、方程、不等式等的应用问题。
2.三角函数与平面向量
小题一般主要考查三角函数的图像与性质、利用诱导公式与和角公式、倍角公式、正余弦定理求值化简、平面向量的基本性质与运算.大题主要以正、余弦定理为知识框架,以三角形为依托进行考查(注意在实际问题中的考查)或向量与三角结合考查三角函数化简求值以及图像与性质.另外向量也可能与解析等知识结合考查.
3.数列
2个小题或1个大题,小题以考查数列概念、性质、通项公式、前n项和公式等内容为主,属中低档题;解答题以考查等(比)数列通项公式、求和公式,错位相减求和、简单递推为主.
4.解五、解析几何(圆锥曲线)析几何
5.立体几何
2小1大,小题必考三视图,一般侧重于线与线、线与面、面与面的位置的关系以及空间几何体中的空间角、距离、面积、体积的计算的考查,另外特别注意对球的组合体的考查.解答题以平行、垂直、夹角、距离等为考查目标.几何体以四棱柱、四棱锥、三棱柱、三棱锥等为主。
6.概率与统计
2小1大,小题一般主要考查频率分布直方图、茎叶图、样本的数字特征、性检验、几何概型和古典概型、抽样(特别是分层抽样)、排列组合、二项式定理第几个重要的分布.解答题考查点比较固定,一般考查离散型随机变量的分布列、期望和方.仍然侧重于考查与现实生活联系紧密的应用题,体现数学的应用性.
7.不等式
小题一般考查不等式的基本性质及解法(一般与其他知识联系,比如、分段函数等)、基本不等式性质应用、线性规划;解答题一般以其他知识(比如数列、解析几何及函数等)为主要背景,不等式为工具进行综合考查,一般较难。
8.算法与推理
二、高考数学选择题6大答题技巧
(2)、不要不管选项
(3)、能定性分析就不要定量计算
(4)、能特值法就不要常规计算
(5)、能间接解就不要直接解
(6)、能排除的先排除缩小选择范围
(7)、分析计算一半后直接选选项
(8)、三个相似选相似
1、特殊值法
方法思想:通过取特值的方式提高解题速度,题中的一般情况必须满足我们取值的特殊情况,因而我们根据题意选取适当的特值帮助我们排除错误,选取正确选项。
2、估算法
方法思想:当选项距较大,且没有合适的解题思路时我们可以通过适当的放大或者缩小部分数据估算出的大概范围或者近似值,然后选取与估算值最接近的选项。
[注意]:带根号比较大小或者寻找近似值时要平方去比较这样可以减少误。
3、逆代法
方法思想:充分发挥选项的作用,观察选项特点,制定解题的特殊方案,可以大大的简化解题步骤,节省时间,做选择题我们切记不要不管选项.
4、特殊情况分析法
方法思想:当题中没有限定情况时,我们考虑问题可以从最特殊的情况开始分析,特殊情况往往可以帮助我们排除部分选项,然后分析从特殊情况到一般情况的[过度](变大、变小)等选出正确。
5、算法简化
方法思想:定性分析代替定量计算,根据题型结构简化计算过程,在一定程度上帮助我们加快了解题速度。
通过下面几个例题的讲解,我们不仅要掌握方法,更重要的是要去体会这种思想,做到活学活用。
6、特殊推论
函数f(x)的图象与直线y=2相邻两公共点间的距离为π,因为f(x)值为2,f(x)的周期为π
T=2π/2w=π (1) f(x)=向量m·向量n=cos^2wx-sin^2wx+2根3sinwxcoswx=cos2wx+根3sin2wx=2sin(2wx+π/6) w=1
(2) f(x)=2sin(2x+π/6)
f(A)=2sin(2A+π/6)=1
sin(2A+π/6)=1/2
2A+π/6=π/6或2A+π/6=5π/6
A=0(舍)或A=π/3
b+c=3, b^2+c^2+2bc=9 b^2+c^2=9-2bc
a=根3,
余弦定理a^2=b^2+c^2-2bccosA
3= 9-2bc-bc bc=2
S=1/2bcsinA=根号3/2
(1)思考如下:先用数量积的定义,把f(x)展开;其次,用二倍角公式把角度化成2wx;,利用辅助角公式化成Asin(2wx+T)+B的形式,利用周期公式即可。(结合图像知,
“函数f(x)的图象与直线y=2相邻两公共点间的距离为派”求周期)以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。
(2)思考如下:要求面积就是找0.5bcsinA,即bc的乘积和角A;根据f(A)=1求角A;利用a=根3,b+c=3结合余弦定理求bc,从而解决。
因为符号不好打,就只说思路。我没有计算,但是思路不会错。
我来看看
不会
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。