掌握导数的基本公式对于微积分的学习至关重要。以下列出了16个最常用的导数公式:
1. 幂律: f(x) = x^n,则 f'(x) = nx^(n-1) 2. 常数律: f(x) = c,则 f'(x) = 0 3. 和差律: f(x) = g(x) ± h(x),则 f'(x) = g'(x) ± h'(x) 4. 积律: f(x) = g(x) h(x),则 f'(x) = g'(x) h(x) + g(x) h'(x) 5. 商律: f(x) = g(x) / h(x),则 f'(x) = (g'(x) h(x) - g(x) h'(x)) / h(x)^2 6. 链式法则: f(x) = g(h(x)),则 f'(x) = g'(h(x)) h'(x) 7. 对数律: f(x) = log(x),则 f'(x) = 1/x 8. 指数律: f(x) = e^x,则 f'(x) = e^x 9. 三角函数导数: - f(x) = sin(x),则 f'(x) = cos(x) - f(x) = cos(x),则 f'(x) = -sin(x) - f(x) = tan(x),则 f'(x) = sec^2(x) 10. 反三角函数导数: - f(x) = arcsin(x),则 f'(x) = 1/sqrt(1-x^2) - f(x) = arccos(x),则 f'(x) = -1/sqrt(1-x^2) - f(x) = arctan(x),则 f'(x) = 1/(1+x^2) 11. 双曲函数导数: - f(x) = sinh(x),则 f'(x) = cosh(x) - f(x) = cosh(x),则 f'(x) = sinh(x) - f(x) = tanh(x),则 f'(x) = 1/(cosh^2(x)) 12. 反双曲函数导数: - f(x) = arcsinh(x),则 f'(x) = 1/sqrt(x^2+1) - f(x) = arccosh(x),则 f'(x) = 1/sqrt(x^2-1) - f(x) = arctanh(x),则 f'(x) = 1/(1-x^2) 13. 隐函数法则: f(x, y) = 0,则 dy/dx = -f'(x, y)/f'(y, x) 14. 对数微分法: f(x) > 0,则 dy/dx = (f'(x) ln(f(x))) / f(x) 15. 参数方程导数: f(t) = x(t),g(t) = y(t),则 dy/dx = dy/dt / dx/dt 16. 极坐标导数: f(r) = r^n,则 f'(r) = nr^(n-1)
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。