因为f′(1)=-1,所以曲线C:y=f(x)10. 高考数学答题技巧在点P(1,1)处的切线l为y=-x+2.
高考导数零点问题教学视频 高考导数大题零点个数问题
高考导数零点问题教学视频 高考导数大题零点个数问题
若切线l与曲线C只有利用导数的知识来求函数极值是高中数学问题比较常见的类型。利用导数求函数极值的一般步骤是:(1)首先根据求导法则求出函数的导数;(2)令函数的导数等于0,从而解出导函数的零点;(3)从导函数的零点个数来分区间讨论,得到函数的单调区间;(4)根据极值点的定义来判断函数的极值点,再求出函数的极值。一个公共点,则方程1/2m(x-1)^2-2x+3+lnx=-x+2有且只有一个实根.
显然x=1是该方程的一个根.
令g(x)=1/2m(x-1)^2-x+1+lnx,则g′(x)=m(x-1)-1+1/x=m(x-1)(x-1/m)/x.
当m=1时,有g′(x)≥0恒成立,所以g(x)在(0,+∞)上单调递增,所以x=1是方程的解,m=1符合题意.
所以g(x2)>g(x1)=0,又当x→0时,g(x)→-∞,所以函数g(x)在(0,1/m)内也有一个解,即当m>1时,不合题意.
高考数学导数解题技巧
1.通过选择题和填空题,全面考查函数的基本概念,性质和图象。
2.在解答题的考查中,与函数有关的试题常常是以综合题的形式出现。
3.从数学具有高度抽象性的特点出发,没有忽视对抽象函数的考查。
4.一些省市对函数应用题的考查是与导数的应用结合起来考查的。
5.涌现了一些函数新题型。
6.函数与方程的思想的作用不仅涉及与函数有关的试题,而且对于数列,不等式,解析几何等也需要用函数与方程思想作指导。
7.多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题。
高考数学导数中2.极值问题档题是拿分点
1.单调性问题
研究函数的单调性问题是导数的一个主要应用,解决单调性、参数的范围等问题,需要解导函数不等式,这类问题常常涉及解含参数的不等式或含参数的不等式的恒成立、能成立、恰成立的求解。由于函数的表达式常常含有参数,所以在研究函数的单调性时要注意对参数的分类讨论和函数的定义域。
求函数y=f(x)的极值时,要特别注意f'(x0)=0只是函数在x=x0有极值的必要条件,只有当f'(x0)=0且在 _ 0 时,f'(x0)异号,才是函数y=f(x)有极值的充要条件,此外,当函数在x=x0处没有导数时, 在 x=x0处也可能有极值,例如函数 f(x)=|x|在x=0时没有导数,但是,在x=0处,函数f(x)=|x|有极小值。
3.切线问题
曲线y=f(x)在x=x0处的切线方程为y-f(x0)=f'(x0)(x-x0),切线与曲线的综合,可以出现多种变化,在解题时,要抓住切线方程的建立,切线与曲线的位置关系展开推理,发展 理性思维 。关于切线方程问题有下列几点要注意:
(2) 和曲线只有一个公共点的直线不一定是切线,反之,切线不一定和曲线只有一个公共点,因此,切线不一定在曲线的同侧,也可能有的切线穿过曲线;
(3) 两条曲线的公切线有两种可能,一种是有公共切点,这类公切线的特点是在切点的函数值相等,导数值相等;另一种是没有公共切点,这类公切线的特点是分别求出两条曲线的各自切线,这两条切线重合。
难点在于分类讨论,解题的关键是“临界点”的确定,落实逻辑推理能力、运算求解能力、分类与整合的能力。常用的方法有分离参数法(参变分离)和分类讨论法,结合代数变形、整体代换法、函数同构——构造函数、不等式等技巧解决函数的隐零点问题及函数的极值点偏移问题。6. 高二数学学习方法指导与学习方法总结
2、导数与函数的单调性:
在这一部分要理解函数的单调性与导数符号之间的关系;灵活运用导数求函数的单调性,理解已知函数单调性求参数取值范围的方法。
3、导数与函数的极值、最值:
4、导数与不等式:
这是难点,学会以基本初等函数或其复合形式为载体的超越函数类型,灵活应用导数研究函数的单调性、极值、最值、零点问题,注意与不等式之间的联系;掌握定义法、公式法、综合法、放缩法。
5、变化率与导数、导数的计算:
在这一部分,我们需要理解导数的概念及实际背景,清楚导数就是瞬时变化率;理解导数的几何意义,会灵活运用导数求两种类型的切线,注意数形结合;落实8大基本初等函数的导数公式、导数的四则运算法则及复合函数求导的方法。
导数是高考数学必考的内容,近年来高考加大了对以导数为载体的知识问题的考查,题型在难度、深度和广度上不断地加大、加深,从而使得导数相关知识愈发显得重要。下面是我为大家整理的关于高中数学导数难题解题技巧,希望对您有所帮助。欢迎大家阅读参考学习!
1高中数学导数难题解题技巧
1.导数在判断函数的单调性当f(x)=0的根不易求解或无法求解时适用。一般方法为:、最值中的应用
2.导数在函数极值中的应用
利用导数求函数中的某些参数的取值范围,成为近年来高考的 热点 。在一般函数含参数的题中,通过运用导数来化简函数,可以更快速地求出参数的取值范围。
2高中数学解题中导数的妙用
导数知识在函数解题中的妙用
函数知识是高中数学的重点内容,其中包括极值、图像、奇偶性、单调性等方面的分析,具有代表性的题型就是极值的计算和单调性的分析,按照普通的解题过程是通过图像来分析,可是对于较难的函数来说,制作图像不仅浪费时间,而且极容易出错,而在函数解题中应用导数简直就是手到擒来。
例如:函数f(x)=x3+3x2+9x+a,分析f(x)的单调性。这是高中数学中常见的三次函数,在对这道题目进行单调性分析时,很多学生根据思维定式会采用常规的手法画图去分析单调区间,但由于未知数a的存在而遇到困难。如果考虑用导数的相关知识解决这一问题,解:f’(x)=-3x2+6x+9,令f’(x)>0,那么解得x<-1或者x>3,也就是说函数在(-∞,-1),(3,+∞)这个单调区间上单调递减,这样就能非常容易的判断函数的单调性。
导数知识在方程求根中的应用属于一项重点内容,在平时的数学练习中以及高考的考察中均曾7. 高二数学:学习方法 导数如何学以不同的难度形式出现过。导数知识能针对方程求根,根据导函数的求解能判断原函数的根的个数。在解这一类问题的时候,教师要善于学生利用导函数与X轴的交点个数来判断方程根的个数。
例如,某一证明问题:方程x-sinx=0,只有一个根x=0。在分析这一问题时实际上就是利用函数的单调性质和特殊值来确定f(x)=0。其证明过程需首先利用到导数知识,令f(x)=x-sinx,定义域为R,求导f(x)=1-cosx>0,再利用函数单调性及数形结合思想,求得x=0是次方程的根。此内容的应用就是最为典型的导数知识在方程求根中的应用。
学会审题,才会解题
很多考生对审题重视不够,往往要做的题目都没有看清楚就急于下笔,审好题是做题的关键,审题一一定要逐字逐句的看清楚,通过审题发现题目有无易漏、易错点,只有仔细审题才能从题目中获取更多的信息,只有挖掘题目中的隐含条件、启发解题思路,提醒常见解题误区和自己易出现的错误,才能提高解题能力。只有认真的审题,谨慎的态度,才能准确地揣摩出题者的意图,发现更多的信息,从而快速找到解题方向。
考前保持头脑清醒,要摒弃杂念,不断进行积极的心理暗示,创设宽松的氛围,创设数学情境,进而酝酿数学思维,静能生慧,满怀信心的进行针对性的自我安慰,以平稳自信、积极主动的心态准备应考。这就要求我们要善于观察。
先做简单题,后做难题
从我们的心理学角度来讲,一般拿到试卷以后,心情比较紧张,此时不要急于下手解题,可以先对试题多少、分布、难易程度从头到尾浏览一遍,做题要先易后难,做到心中有数,一般简单的题目占全卷60%,这是很重要的一部分分数,见到简单题要细心解题,尽量使用数学语言,而且要更加严谨以振奋精神,养成良好的审题习惯鼓舞信心。
如果顺序做题既耗费时间又拿不到分,会做的题又被耽误了。所以先做简单题,多年的 经验 告诉我们,当你解题不顺利时,更要冷静,静下心来,沉住气,根据自己的实际情况,果断跳过自己不会做的题目,把简单的都做完,如果我们能把这部分的分数拿到,就已经打了胜仗,再集中精力做比较难的题,有了胜利的信心,面对住偏难的题更要有耐心,不要着急,可以先放弃,但也要注意认真对待每一道题,不能走马观花,要相信自己。到应有的分数。还有善于把难题转换成简单的题目的能力。
4高中数学的解题技巧
审题技巧
审题是正确解题的关键,是对题目进行分析、综合、寻求解题思路和 方法 的过程,审题过程包括明确条件与目标、分析条件与目标的联系、确定解题思路与方法三部分。(1)条件的分析,一是找出题目中明确告诉的已知条件,二是发现题目的隐含条件并加以揭示。目标的分析,主要是明确要求什么或要证明什么;把复杂的目标转化为简单的目标;把抽象目标转化为具体的目标;把不易把握的目标转化为可把握的目标。
(2)分析条件与目标的联系。每个数学问题都是由若干条件与目标组成的。解题者在阅读题目的基础上,需要找一找从条件到目标缺少些什么?或从条件顺推,或从目标分析,或画出关联的草图并把条件与目标标在图上,找出它们的内在联系,以顺利实现解题的目标。(3)确定解题思路。一个题目的条件与目标之间存在着一系列必然的联系,这些联系是由条件通向目标的桥梁。用哪些联系解题,需要根据这些联系所遵循的数学原理确定。解题的实质就是分析这些联系与哪个数学原理相匹配。
类型题掌握,提升发散性
学习的过程也是知识的积累过程,所以,不论是哪一学科,都不能期待能一朝实现学校目标,而数学亦是如此。所以,在日常解答某些类型数学题的时候,对其题型加以掌握,这是提高学生解题能力,培养学生解题技巧的重要途径之一,并且效果良好。
高中数学导数难题解题技巧相关 文章 :
1. 高中数学解题技巧冲刺得分题
2. 高中数学六种解题技巧与五种数学答题思路
3. 高二数学不好怎么办?遇到困难怎么办
4. 高中数学导数练习题及
5. 高中数学导数测试题及
8. 高中数学大题的解题技巧及解题思想
9. 高中数学解答题8个答题模板与做大题的方法
f(x)n阶可导,若f(x)在[a,b]有n+1个零点,那么f(x)的导数在(a,b)至少有n个零点,所以f(x)的二阶导数在(a,b)至少有n-1个零点……f(x)的n阶导数在(a,b)至少有1个零点。相反的若f(x)的n阶导数在(a,b)无零点,那么f(x)的n-1阶导数最多一个零点…f(x)在当m>1时,令g′(x)=0,得x1=1,x2=1/m,则x2∈(0,1),易得g(x)在x1处取到极小值,在x2处取到极大值.[a,b]最多n个零点
一般常见的零点的证明都是存在性的,如果要确3.导数在求参数的取值范围时的应用定个数的话:
(1)利用单调性,严格单调函数一个零点。
(2)利用罗尔定理反证,若f至多2个零点,此时f的导数至多有一个零点,我们可以设f有3个零点,用两次罗尔定理,我们会得到f导函数有两个零点,这是矛盾的,所以显然设不成 3高中数学的解题技巧立
用导数来确定函数的零点
或者根据已知的函数零点及其个数有关条件,逆向求解函数相关问题,如参数问题。也就是得到方程的解的个数
这当然是很好的方法
但是这种方法不一定每个地区的教学都有的
要判断函数零点的所在区间,可以使用如下的方法:
很多地方还是要用基本的函数方法才行1.在函数图像上找到函数的零点,并分析其左右两侧的函数值。如果函数在零点的左侧的值为负,而在零点的右侧的值为正,则零点所在的区间为(零点左侧的数值,零点右侧的数值)。
2.使用单调性分析法。如果函数在零点左侧的值单调递减,而在零点右侧的值单调递增,则零点所在的区间为(零点左侧的数值,零点右侧的数值)。
3.使用导数分析法。如果函数在零点左侧的导数为负,而在零点右侧的导数为正,则零点所在的区间为(零点左侧的数值,零点右侧的数值)。
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。