由y^2=2px得p=2,所以准线方程为x=-1(x型抛物线,且开口向右,所以准抛物线是指平值域:对于抛物线y1=2px,值域为R,对于抛物线x1=2py,p>0时,值域为y≥0,p<0时,值域为y≤0。面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。它有许多表示方法,例如参数表示,标准方程表示等等。 它在光学和力学中有重要的用处。 抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线。抛物线在合适的坐标变换下,也可看成二次函数图像。线为x=-p/2,即x=-1)
抛物线的准线方程_双曲线的准线方程
抛物线的准线方程_双曲线的准线方程
方程(x-a)2+(y-b)2= r2 叫做圆的标准方程. (a,b)为圆心,r为半径
准线方程l:x=-p/2椭圆(1)标准方程:焦点在x轴上 x2/a2 +y2/b2=1
焦点在y轴上y2/a2+x2/b2=1
2、 直径:抛物线的直径是抛物线一组平行弦中点的轨迹。这条直径也叫这组平行弦的共轭直径。 双曲线
焦点在y轴上y2/a2-x2/b2=1
(其中a>0,b>0,c2=a2+b2)
3:抛物线:标准方程y2 = 2px (p>0)
焦点到准线的距离
焦 点:(p/2 ,0)在x轴的正半轴上
准 线:x = - p/2
顶 点:坐标原点(0,0)
开口方向:向右
直线:y=kx+b(k斜率,b截距)
在空间曲面一般理论中,曲面可以看作一族曲线沿其准线运动所形成的轨迹,对曲线族生成曲面而言,准线就是和曲线族中抛物线的每一条曲线均相交的空间曲线。
(其中a>b>0, a2=b2+c2)相关信息:
在空间曲面一般理论中,曲面可以看作一族曲线沿其准线运动所形成的轨迹,对曲线族生成曲面而言,准线就是和曲线族中的每一条曲线均相交的空间曲线。
抛物线上点到焦点距离等于到准线的距离,也准线方程的确定对于研究曲面的几何特征和形状有着重要的价值。 一方面,确定一条准线的方程是建立曲面方程的前提,另一方面对于给定方程的曲面的几何特征也可通过其上的一条准线方程研究。等于这点的横坐标x1+p/2(对应抛物线y^2=2px)。
平面内,到定点通径:2P ;定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。
抛物线是指平面内与一定点和一定直线(定直线不经过定点)的距离相等的点的轨迹,其中定点叫抛物线的焦点,定直线叫抛物线的准线。它有许多表示方法,例如参数表示,标准方程表示等等。 它在几何光学和力学中有重要的用处。
抛物线的一个描述涉及一个点(焦点)和一条线(准线)。焦点并不在准线上,抛物线是该平面中与准线和焦点等距的点的轨迹。抛物线的另一个描述是作为圆锥截面,由圆锥形表面和平行于锥形母线的平面的交点形成。第三个描述是代数。
准线方程为x=-p/2,
弦:抛物线的弦(!) 标准方程:焦点在x轴上x2/a2-y2/b2=1是连接抛物线上任意两点的线段。或:
设抛物线是y^2=2px
则准线是x=-p/2
抛物线上一点是(x0,y0)
扩展资料:
定义域:对于抛物线y1=2px,p>0时,定义域为x≥0,p<0时,定义域为x≤0;对于抛物线x1=2py,定义域为R。
抛物线方程为:y^2=2px,焦点坐标为(p/2,0),
准线方程为x=-p/2,
故抛物线焦点到准线的距离为p/2-(-p/2)=p.
抛物线标准方程:y2=2px。
①定义法。
②公式法。
记住课本里四个基本的抛物线方程及相应的准线方程就可以了③图像法。
④利用重要结论:若函数f(x)满足f(a-x)=f(a+x),f(b-x)=f(b+x),a≠b,则T=2b-2a。
函准线在圆锥曲线的统一定义:平面内一点到定点与定直线的距离的比为常数e(e>0)的点的轨迹,叫圆锥曲线。而这条定直线就叫做准线(Directrix)。0
(2)单调性:研究函数的单调性应结合函数单调区间,单调区设抛物线上一点P的切线与准线相交于Q,F是抛物线的焦点,则PF⊥QF。且过P作PA垂直于准线,垂足为A,那么PQ平分∠APF。间应是定义域的子集。
平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。
它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2。由于抛物线的焦点可在任意半轴,故共有标准方程y2=2px,y2=-2px,x2=2py,x2=-2py。在数学中,抛物线是一个平面曲线,它是镜像对称的,并且当定向大致为U形(如果不同的方向,它仍然是抛物线)。它适用于几个表面上不同的数学描述中的任何一个,这些描述都可以被证明是完全相同的曲线。
抛物线的一个描述涉及一个点(焦点)和一条线(准线)。焦点并不在准线上。抛物线是该平面中与准线和焦点等距的点的轨迹。抛物线的另一个描述是作为圆锥截面,由圆锥形表面和平行于锥形母线的平面的交点形成。第三个描述是代数。
抛物线是轴对称图形,垂直于准线并通过焦点的线(即通过中间分解抛物线的线)是抛物线的“对称轴”。与对称轴相交的抛物线上的点被称为“顶点”,并且是抛物线锋利弯曲的点。沿着对称轴测量的顶点和焦点之间的距离是“焦距”。 “直线”是抛物线的平行线,并通过焦点。抛物线可以向上,向下,向左,向右或向另一个任意方向打开。任何抛物线都可以重新定位并重新定位,以适应任何其他抛物线 - 也就是说,所有抛物线都是几何相似的。
抛物线具有这样的性质,如果它们由反射光的材料制成,则平行于抛物线的对称轴行进并撞击其凹面的光被反射到其焦点,而不管抛物线在哪里发生反射。相反,从焦点处的点源产生的光被反射成平行(“准直”)光束,使抛物线平行于对称轴。声音和其他形式的能量也会产生相同的效果。这种反射性质是抛物线的许多实际应用的基础。
抛物线具有许多重要的应用,从抛物面天线或抛物线麦克风到汽车前照灯反射器到设计弹道。它们经常用于物理,工程和许多其他领域。
共同点:
①原点在抛物线上,离心率e这个函数图像是一条抛物线。均为1 ②对称轴为坐标轴;
③准线与对称轴垂直,垂足与焦点分别对称于原点,它们与原点的距离都等于一次项系数的的1/4
不同点:
①对称轴为x轴时,方程右端为±2px,方程的左端为y^2;对称轴为y轴时,方程的右端为±2py,方程的左端为x^2;
②开口方向与x轴(或y轴)的正半轴相同时,焦点在x轴(y轴)的正半轴上,方程的右端取正号;开口方向与x(或y轴)的负半轴相同时,焦点在x轴(或y轴)的负半轴上,方程的右端取负号。
切线方程
抛物线y2=2px上一点(x0,y0)处的切线方程为:
。抛物线y2=2px上过焦点斜率为k的方程为:y=k(x-p/2)。
离心率:e=1(恒为定值,为抛物线上一点与准线的距离以及该点与焦点的距离比)
焦点:(p/2,0)
顶点:(0,0)
定义域:对于抛物线y1=2px,p>0时,定义域为x≥0,p<0时,定义域为x≤0;对于抛物线x1=2py,定义域为R。
准线、焦点:抛物线是平面内到一定点和到一条不过此点的定直线的距离相等的点的轨迹。这一定点叫做抛物线的焦点,定直线叫做抛物线的准线。
轴:抛物线是轴对称图形,它的对称轴简称轴。
焦弦:抛物线的焦弦是经过抛物线焦点的弦。
正焦弦:抛物线的正焦弦是垂直于轴的焦弦。
主要直径:抛物线的主要直径是抛物线的轴。
在抛物线x^2=2py
中,焦点是(0,p/2),准线l的方程是y=-p/2
有此可知x^周期性:周期性抛物线方程为:y^2=2px,焦点坐标为(p/2,0)主要运用在三角函数及抽象函数中,是化归思想的重要手段。求周期的重要方法:2=y中,焦点是(0,1/4),准线l的方程是y=-1/4
版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。