高考函数性质解题思路分析 高考数学函数及其性质知识点

高考志愿 2025-04-24 09:49:44

高考数学中, 选择题的命题规律及常用的6大技巧及例题!

解答高考选择题既要求准确,又要快速选择,正如高冠教育(ggedu21)明确指出的,应“多一点想的,少一点算的”。我们都会有算错的时候,怎样才不会算错呢?“不算就不会算错” 因此,在解答时应该突出一个"选"字,尽量减少书写解题过程,在对照选择支的同时,多方考虑间接解法,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取。我们不要给任何“方法”做出限定,重要的是这种解答的思想方式。

高考函数性质解题思路分析 高考数学函数及其性质知识点高考函数性质解题思路分析 高考数学函数及其性质知识点


高考函数性质解题思路分析 高考数学函数及其性质知识点


高考函数性质解题思路分析 高考数学函数及其性质知识点


高考函数性质解题思路分析 高考数学函数及其性质知识点


1、函数与导数

2—3个小题,1个大题,客观题主要以考查函数的基本性质、函数图像及变换、函数零点、导数的几何意义、定积分等为主,也有可能与不等式等知识综合考查;解答题主要是以导数为工具解决函数、方程、不等式等的应用问题。

2.三角函数与平面向量

小题一般主要考查三角函数的图像与性质、利用诱导公式与和角公式、倍角公式、正余弦定理求值化简、平面向量的基本性质与运算.大题主要以正、余弦定理为知识框架,以三角形为依托进行考查(注意在实际问题中的考查)或向量与三角结合考查三角函数化简求值以及图像与性质.另外向量也可能与解析等知识结合考查.

3.数列

2个小题或1个大题,小题以考查数列概念、性质、通项公式、前n项和公式等内容为主,属中低档题;解答题以考查等(比)数列通项公式、求和公式,错位相减求和、简单递推为主.

4.解析几何

2小1大,小题一般主要以考查直线、圆及圆锥曲线的性质为主,一般结合定义,借助于图形可容易求解,大题一般以直线与圆锥曲线位置关系为命题背景,并结合函数、方程、数列、不等式、导数、平面向量等知识,考查求轨迹方程问题,探求有关曲线性质,求参数范围,求最值与定值,探求存在性等问题.另外要注意对二次曲线之间结合的考查,比如椭圆与抛物线,椭圆与圆等.

5.立体几何

2小1大,小题必考三视图,一般侧重于线与线、线与面、面与面的位置的关系以及空间几何体中的空间角、距离、面积、体积的计算的考查,另外特别注意对球的组合体的考查.解答题以平行、垂直、夹角、距离等为考查目标.几何体以四棱柱、四棱锥、三棱柱、三棱锥等为主。

6.概率与统计

2小1大,小题一般主要考查频率分布直方图、茎叶图、样本的数字特征、性检验、几何概型和古典概型、抽样(特别是分层抽样)、排列组合、二项式定理第几个重要的分布.解答题考查点比较固定,一般考查离散型随机变量的分布列、期望和方.仍然侧重函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据; 解析法:必须注明函数的定义域; 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征; 列表法:选取的自变量要有代表性,应能反映定义域的特征.于考查与现实生活联系紧密的应用题,体现数学的应用性.

7.不等式

小题一般考查不等式的基本性质及解法(一般与其他知识联系,比如、分段函数等)、基本不等式性质应用、线性规划;解答题一般以其他知识(比如数列、解析几何及函数等)为主要背景,不等式为工具进行综合考查,一般较难。

8.算法与推理

程序框图每年出现一个,一般与函数、数列等知识结合,难度一般;推理题偶尔会出现一个。

二、高考数学选择题6大答题技巧

答题口诀:

(1)、小题不能大做

(2)、不要不管选项

(4)、能特值法就不要常规计算

(5)、能间接解就不要直接解

(6)、能排除的先排除缩小选择范围

(7)、分析计算一半后直接选选项

(8)、三个相似选相似

1、特殊值法

方法思想:通过取特值的方式提高解题速度,题中的一般情况必须满足我们取值的特殊情况,因而我们根据题意选取适当的特值帮助我们排除错误,选取正确选项。

2、估算法

方法思想:当选项距较大,且没有合适的解题思路时我们可以通过适当的放大或者缩小部分数据估算出的大概范围或者近似值,然后选取与估算值最接近的选项。

[注意]:带根号比较大小或者寻找近似值时要平方去比较这n时,4m样可以减少误。

3、逆代法

方法思想:充分发挥选项的作用,观察选项特点,制定解题的特殊方案,可以大大的简化解题步骤,节省时间,做选择题我们切记不要不管选项.

4、特殊情况分析法

方法思想:当题中没有限定情况时,我们考虑问题可以从最特殊的情况开始分析,特殊情况往往可以帮助我们排除部分选项,然后分析从特殊情况到一般情况的[过度](变大、变小)等选出正确。

5、算法简化

方法思想:定性分析代替定量计算,根据题型结构简化计算过程,在一定程度上帮助我们加快了解题速度。

通过下面几个例题的讲解,我们不仅要掌握方法,更重要的是要去体会这种思想,做到活学活用。

6、特殊推论

求函数最值问题的思路是什么?

3,掌握问题的叙述,通法通则是连立方程(当然是有交★ 高二数学知识点总结详细点的情况)

把导数等于零的点题目给的定义域的端点都带入方程,其中的值就是值最小值就是最小值,如果定义域是开区间就不用算端点了

先用求导等方法求出所有的驻点,再代入原函数看看哪个结果就是值.如果有定义的区间还得比较区间两端点的函数值大小哟.

求二次函数的应用题解题技巧.

(3)、能定性分析就不要定量计算

函数应用题的解题技巧是贴进生产和生活实际的数学应用问题,充分体现了数学基本方法的灵活运用和基本数学思想的渗透.下面就函数应用题的类型及解法举例分析.

一. 函数模型为反比例函数问题

例1:学校请了30个木匠,要制作200把椅子和100张课桌.已知制作一张课桌与一把椅子的工时之比为10:7,问30个木匠应当如何分组(一组制课桌另一组制椅子),能使完成全部任务最快?

分析:对于本题要注意用变化的观点分析和探求具体问题中的数量关系,寻找已知量与未知量之间的内在联系,然后将这些内在联系与数学知识联想,建立函数关系式或列出方程,利用函数性质或方程的观点去解,使应用问题化生为熟,尽快得到解决.

设x个木匠制课桌,(30-x)个木匠制椅子,一个木匠在一个单位时间里可制7张课桌或10把椅子,所以制作100张课桌所需时间为函数,制作200把椅子所需时间为函数 ,完成全部任务所需时间为函数y(x)=max{P(x),Q(x)}

要求的y(x)的最小值,需满足P(x)=Q(x),即 解得x=12.5 , 考虑到人数为整数,考查P(12)与Q(13), P(12)=

Q(13)= 即y(12)>y(13),

所以用13个木匠制课桌,17个木匠制椅子完成全部任务最快.

二.函数模型为一次函数问题

例2:某家报刊买进报纸的价格是每份0.35元,卖出的价格是每份0.50元,卖不掉的报纸还可以每份0.80元的价格退回报社.在一个月(30天)里,又20天每天可以卖出400份,其余10天每天只能卖出份.设每天从报社买进的报纸的数量相同,则应该每天从报社卖劲多少份,才能使每月所获的利润?并计算该销售点一个月最多可赚得多少元?

分析:此题主要在于分析题目中的条件,建立合适的关系式,应用函数的性质去解决问题,并考虑在定义域内的局限性与实际意义.如此题每月所赚的钱=卖报所得的金额—付给报社的金额.而卖报所得的金额分三部分.从而可列出函数解析式.

设每天应从报社买x份,可的≦x≦400,设每月赚y元,得

y=0.5x·20+0.5××10+(x-)×0.08×10-0.35·x·30

=0.3x+1050 函数题型:求函数解析式。常见的求函数解析式的方法有待定系数法,换元法,配凑法、方程组法。 x∈[,400]

因为y =0.3x+1050是定义域上的增函数,所以当x=400时, y大=120+1050=1170(元)

答:每天从报社卖进400份, 使每月所获的利润,每月可赚得1070元.

三.函数模型为一二次函数问题

例3:有(m)长的钢材,要做成如图所示的窗架,上半部分为半圆,下半部分为六个全等矩形组成的矩形,试问小矩形的长宽比为多少时,窗所通过的光线最多,并算出窗框的值.

分析:应用数学知识解决应用型问题,是提高数学素质的训练内容之一,教材中也多出出现,对于此题的分析要注意观察问题的结构特征,揭示内在联系,挖掘隐含条件,从而恰当的构造出函数,应用函数的具体性质去解决问题.本题中面积为两部分够成,而面积就为窗所通过的光线,从而可列出函数解析式进一步解出题目.

设小矩形的长为x, 宽y为 ,则由图形可得:

11x+x+9y= ∴9y=-(11+)x

要使窗所通过的光线最多,即要窗框的面积,则

S==+[x-(11+)x2]

=-(x-+.

所以当x= , y=

即=1:1 此时窗框的面积s有值S=

四.函数模型为其他函数问题

分析:首先应根据题意,建立利润与资金之间的函数关系,求的函数解析式,然后再转化为求函数的值问题.求解本题的关键是建立目标函数及求最值的方法,换元法是求无理函数最值的常用方法,在换元过程中要注意变量的取值范围的变化.

设对甲种商品投资x万元,则乙种商品投资(3-x)万元,总利润y万元,据题意有:

Y= ( 0≦x≦3 )

设=t 则x=3-t2, 0≦x≦

所以 y= 0≦x≦

当x=时 y大=1.05, 此时x=0.75 ,3-x=2.25

由此可知,为获得利润,对甲乙两种商品的资金投入应分别为0.75万元和2.25万元, 获的总利润为1.05万元

总之,函数的应用是数学思想的体现,是应用数学知识解决实际问题的有效途经.如果我们学好了这部分,在具体的题目中会分析题目,找出关系量之间的联系,建立适当的函数关系式,把实际问题转化为数学模型,然后利用初等函数的性质,去解决问题.使抽象问题数学化,化生为熟.

高一函数解题思路

值域补充

有关函数题目的思路:

1.单调性

2.对称性

3.特殊值

4.奇偶性

用上题说明:

1.二次函数f(x)应该首先想到设:f(x)

=ax^2

+bx

+c

(a不等于0)

2.看到这题已知条件,应该发现特殊值:f(2)=0

(这里可以设f(x)

=ax(x-2),由于f(0)=f(2)=0),

f(x)=2x

有一根为x=0(由于f(0)=0)

3.其次可以发现由于:f(x-1)=f(3-x),所以f(x)关于[(x-1)

+(3-x)]/2

=1对称(即f(x)关于x=1对称)。

对称这点从2也可看出,则现在可以重新设f(x)

=a(x-1)^2

+c

f(0)

=a

1

+c

==>

c=

所以:f(x)

=a(x-1)^2

-a

=ax(x-2)即在2中的设。

4.方程f(x)=2x有等根,

即ax(x-2)

=2x

=>

a=

-1

说明:ax(x-2)

=2x

=>

x(ax-2a-2)

=0有等根,即2a+2

=所以f(x)=-x(x-2)

5.第二问首先设存在,即当

m<=

x<=

f(x)=-x(x-2)

4n

6.则有两个不等是组:m

x<=

n;

4m

-x(x-2)

4n

,现在需要判断x是否有解。若无解则不存在,若有解则求m

n的值。

7.

n>=x>=m,

-x(x-2)>=4m

=>

x^2

+4m

<=0有解,则

m<=1/4

<1,

-a,当n<1时:则在m<=x<=n内,f(x)的最小值为f(m),值为f(n)

(运用了单调性)

则:f(m)

=4m

=>

m=0

,m=-2

f(n)

=4n

=>

n=0

,n=-2

由于m

=>

m=-2

,n=0

当n>=1时:则在m<=x<=n内,f(x)的值为f(1)

则:f(1)

=4n

=>

n=1/4

<1与n>=1矛盾。

故存在m=-2

,n=0

8.a>0,且a不等于1

有两个零点

=>

a^x

-x

-a

=有两不等根

设g(x)

=a^x,

h(x)

=x

+a

单调性,

当0

当a>1时,显然成立。

1,首先把握定义和题目的叙述

2,记住一次函数与坐标轴的交点坐标,必须很熟

高二数学函数基本性质知识总结

题型四

关于函数的基本性质的知识点是一个系统的知识体系,需要重点掌握,下面给大家分享一些关于 高二数学 函数基本性质知识 总结 ,希望对大家有所帮助。

知识点总结

(一)函数的有关概念

1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于A中的任意一个数x,在B中都有确定的数f(x)和它对应,那么就称f:A→B为从A到B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的{f(x) x∈A }叫做函数的值域.

注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的; 函数的定义域、值域要写成或区间的形式.

定义域补充

能使函数式有意义的实数 x 的称为函数的定义域,求函数的定义域时列不等式组的主要依据是:

(1) 分式的分母不等于零;

(2) 偶次方根的被开方数不小于零;

(3) 对数式的真数必须大于零;

(5) 如果函数是由一些基本函数通过四则运算结合而成的 . 那么,它的定义域是使各部分都有意义的 x 的值组成的 .

(6)指数为零底不可以等于零

构成函数的三要素:定义域、对应关系和值域

再注意:

(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断 方法 :①表达式相同;②定义域一致 (两点必须同时具备)

( 1 )、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域 . ( 2 ) . 应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础 . ( 3 ) . 求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等 .

3. 函数图象知识归纳

(1) 定义:在平面直角坐标系中,以函数 y=f(x) , (x ∈A)中的 x 为横坐标,函数值 y 为纵坐标的点 P(x , y) 的 C ,叫做函数 y=f(x),(x ∈A)的图象.

C 上每一点的坐标 (x , y) 均满足函数关系 y=f(x) ,反过来,以满足 y=f(x) 的每一组有序实数对 x 、 y 为坐标的点 (x , y) ,均在 C 上 . 即记为 C={ P(x,y) y= f(x) , x ∈A }

图象 C 一般的是一条光滑的连续曲线 ( 或直线 ), 也可能是由与任意平行与 Y 轴的直线最多只有一个交点的若干条曲线或离散点组成 .

(2) 画法

A、描点法:根据函数解析式和定义域,求出 x,y 的一些对应值并列表,以 (x,y) 为坐标在坐标系内描出相应的点 P(x, y) ,用平滑的曲线将这些点连接起来 .

B、图象变换法(请参考必修4三角函数)

常用变换方法有三种,即平移变换、伸缩变换和对称变换

(3) 作用:

1 、直观的看出函数的性质; 2 、利用数形结合的方法分析解题的思路。提高解题的速度。

发现解题中的错误。

(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.

5.什么叫做映射

一般地,设A、B是两个非空的,如果按某一个确定的对应法则f,使对于A中的任意一个元素x,在B中都有确定的元素y与之对应,那么就称对应f:A B为从A到B的一个映射。记作“f:A B”

给定一个A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象

说明:函数是一种特殊的映射,映射是一种特殊的对应,①A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从A到B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)A中的每一个元素,在B中都有象,并且象是的;(Ⅱ)A中不同的元素,在B中对应的象可以是同一个;(Ⅲ)不要求B中的每一个元素在A中都有原象。

常用的函数表示法及各自的优点:

注意:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值

补充:

补充一:分段函数 (参见课本P24-25)

在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.

补充二:复合函数

如果 y=f(u),(u ∈M),u=g(x),(x∈A),则 y=f[g(x)]=F(x),(x∈A) 称为f、g的复合函数。

常见考点考法

高二数学函数基本性质知识总结相关 文章 :

★ 高二数学知识点总结

★ 高二数学知识点总结(人教版)

★ 高二数学知识点归纳小总结

★ 高二数学知识点归纳小总结

★ 高二数学知识点归纳小结

★ 高二数学曲线y=f(x)在x=x0处的切线方程为y-f(x0)=f'(x0)(x-x0),切线与曲线的综合,可以出现多种变化,在解题时,要抓住切线方程的建立,切线与曲线的位置关系展开推理,发展 理性思维 。关于切线方程问题有下列几点要注意:考点知识点总结复习大纲

★ 高二数学必修一函数的概念知识点与学习方法

★ 高二数学知识点总结归纳

高考数学必考题型及答题技巧是什么

高中数学是比较难的,想要学好高中数学,必须认真听讲,认真做题,我整理了高考数学必考题型和答题技巧,来看一下!

高考数学必考题型是什么

4.快去了解区间的概念题型一

运用同三角函数关系、诱导公式、和、、倍、半等公式进行化简求值类。

题型二

运用三角函数性质解题,通常考查正弦、余弦函数的单调性、周期性、最值、对称轴及对称中心。

题型三

解三角函数问题、判断三角形形状、正余弦定理的应用。

数列的通向公式的求法。

高考数学答题技巧有哪些

1、函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。

2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;

3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……;

4、选择与填空中出现不等式的题目,优选特殊值法;

5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;

6、恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;

7、圆锥曲<=线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;

高考数学导数解题技巧

高考数学导数解题技巧

1.通过选择题和填空题,全面考查函数-2x的基本概念,性质和图象。

2.在解答题的考查中,与函数有关的试题常常是以综合题的形式出现。

3.从数学具有高度抽象性的特点出发,没有忽视对抽象函数的考查。

4.一些省市对函数应用题的考查是与导数的应用结合起来考查的。

5.涌现了一些函数新题型。

6.函数与方程的思想的作用不仅涉及与函数有关的试题,而且对于数列,不等式,解析几何等也需要用函数与方程思想作指导。

7.多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题。

8.求极值, 函数单调性,应用题,与三角函数或向量结合。

高考数学导一、高考数学选择题命题规律如下:数中档题是拿分点

1.单调性问题

研究函数的单调性问题是导数的一个主要应用,解决单调性、参数的范围等问题,需要解导函数不等式,这类问题常常涉及解含参数的不等式或含参数的不等式的恒成立、能成立、恰成立的求解。由于函数的表达式常常含有参数,所以在研究函数的单调性时要注意对参数的分类讨论和函数的定义域。

2.极值问题

求函数y=f(x)的极值时,要特别注意f'(x0)=0只是函数在x=x0有极值的必要条件,只有当f'(x0)=0且在 _ 0 时,f'(x0)异号,才是函数y=f(x)有极值的充要条件,此外,当函数在x=x0处没有导数时, 在 x=x0处也可能有极值,例如函数 f(x)=|x|在x=0时没有导数,但是,在x=0处,函数f(x)=|x|有极小值。

还要注意的是, 函数在x=x0有极值,必须是x=x0是方程f'(x)=0的根,但不是二重根(或2k重根),此外,在确定极值点时,要注意,由f'(x)=0所求的驻点是否在函数的定义域内。

3.切线问题

(1)求切线方程时,要注意直线在某点相切还是切线过某点,因此在求切线方程时,除明确指出某点是切点之外,一定要设出切点,再求切线方程;

(2) 和曲线只有一个公共点的直线不一定是切线,反之,切线不一定和曲线只有一个公共点,因此,切线不一定在曲线的同侧,也可能有的切线穿过曲线;

高一数学函数题型及解题技巧是什么?

5.……

古代“函”字与“含”字通用,都有着“包含”的意思。李善兰给出的定义是:“凡式中含天,为天之函数。”古代用天、地、人、物4个字来表示4个不同的未知数或变量。

这个定义的含义是:“凡是公式中含有变量x,则该式2、搞清是什么概率模型,套用哪个公式;子叫做x的函数。”所以“函数”是指公式里含有变量的意思。

设函数f(x)的定义域为D,区间I包含于D。如果对于区间上任意两点x1及x2,当x1

如果对于区间I上任意两点x1及x2,当x1f(x2),则称函数f(x)在区间I上是单调递减的。单调递增和单调递减的函数统称为单调函数。

高三函数复习方法技巧

高三是个压力大的时期,每位学子都要经历

作为学生,高考是我们的目标,数学是150分的科目,学好它,必须要经过函数这一个大关

复习函数,一定先要知道它的三要(4) 指数、对数式的底必须大于零且不等于 1.义四性,也就是定义域,值域,解析式;单调性,奇偶性,周期性,有界性

在复习时,千万不可以心关于值域 定义域的考核是重点急,要耐心地做相应的练习,巩固总结做题方法,把综合应用解决,要求我们做到对函数性质的熟悉,对解题思路的理顺,我们还要在模拟考试中把握做题心态,把错题一点一点改正,这就是我们要做到的复习

版权声明:本文内容由互联。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发 836084111@qq.com 邮箱删除。